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Abstract

Cable-stayed arch bridge is a new type of composite bridge, which utilizes the mechanical characters of cable and arch.

Based on the supporting members of cable-stayed arch bridge and of erection of arch bridge using of the cantilever

construction method with tiebacks, we propose a novel mechanical model of cable–arch structure. In this model, the

equations governing vibrations of the cable–arch are derived according to Hamilton’s principle for dynamic problems in

elastic body under equilibrium state. Then, the program of solving the dynamic governing equations is ultimately

established by the transfer matrix method for free vibration of uniform and variable cross-section, and the internal

characteristics of the cable–arch are investigated. After analyzing step by step, the research results approve that the

program is accurate; meanwhile, the mechanical model and method are both valuable and significant not only in

theoretical research and calculation but also in design of engineering.

r 2007 Published by Elsevier Ltd.
1. Introduction

The cable–arch is featured by combination flexibility of cable and stiffness of arch. For this superior
structure, cable–arches are extremely efficient structural members and hence have been widely used in many
long-span structures, including cable-supported roofs and cable-stayed arch bridge. Thus, the dynamic study
of the cable–arches is of great engineering significance. Generally speaking, the mechanical feature results
from cables and arches.

The dynamic study of the cable and arch is comparatively complicated. Due to practical importance of
circular arches, many researchers have studied static as well as dynamic behavior of such elements. More than
600 articles have been summarized in review articles [1–5]. In general, the in-plane and out-of-plane vibrations
of a planar arch are coupled. However, based on the Euler–Bernoulli hypothesis, if the cross-section of arch is
uniform and doubly symmetric, i.e., the shear center and centroid coincide, and the in-plane and out-of-plane
vibrations are uncoupled, then the out-of-plane bends and torsion responses will still be coupled.

The review shows that most of the researchers calculate the natural frequencies of arches using numerical
simulations. Laura et al. [6] used the Rayleigh–Ritz method to investigate in-plane vibration of an arch with
non-uniform thickness by using the classical arch theory in which the effects of axial extension, shear
deformation and rotatory inertia are neglected. Chidamparam and Leissa [7] employed the Galerkin method,
ee front matter r 2007 Published by Elsevier Ltd.
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with polynomial trial functions that satisfy the geometric boundary conditions, to obtain accurate values of
free vibration frequencies. Kawakami et al. [8] derived the characteristic equation for free vibration by
applying the Green function and studied the analysis for both in-plane and out-of-plane free vibration of
horizontally curved beams with arbitrary shapes and variable cross-sections. In the paper of Karami and
Malekzadeh [9], a differential quadrature (DQ) methodology recently developed by the authors is used to
obtain a general and a computationally efficient and accurate DQ solution for free vibration of variable cross-
section circular thin arches. Rubin and Tufekci [10] investigated small deformation three-dimensional free
vibrations of a circular arch with uniform rectangular cross-section by using theoretical approach and finite
element method. Special emphasis focused on the formulation by using the theory of the Cosserat point. Finite
element results were presented and some experiments were also conducted to verify the theoretical and finite
element results. Tufekci and Arpaci [11] studied the free in-plane vibrations of circular arches of uniform
cross-section by considering axial extension, transverse shear and rotatory inertia effects. Recently, Tufekci
and Ozzdemirci [12] and Tufekci and Dogruer [13] investigated the free in-plane and out-of-plane vibrations of
a circular arch with uniform cross-section by taking into account the effects of transverse shear and rotatory
inertia using the initial value method.

Similarly, the dynamic studies of the cable–arch are challenging and remain a key research field in
mathematics, mechanics, and aerospace and civil engineering. It is noteworthy that the majority of the papers
on this subject are restricted to the pure arches. Much less research has been focused on the cable–arches.
Krishna [14] gave a review of the latest issues and developments of cable structures in tension roofs and
bridges. Ju and Guo [15] investigated the in-plane elastic buckling behavior of arch and cable–arch. Cui et al.
[16] and Hu and Guo [17] studied the static behavior of pre-stress cable–truss structure and the inelastic
behavior of pre-stress cable–arch. However, Refs. [14–17] research on cable–arches in building constructions.
Recently, Zhao et al. [18,19] presented the static and dynamic behavior of cable-stayed arch bridge as well as
the differences of the internal force distribution between the bridge and the normal arch bridge. In Ref. [20],
the eigenvalue buckling and nonlinear buckling of cable-stayed arch structure were investigated by
establishing a two-dimensional finite element model.

In this study, the free in-plane vibration of a cable-stayed circular arch with uniform and discontinuously
varying cross-section is investigated by using the transfer matrix method, but the effects of damping, axial
extension, transverse shear deformation and rotary inertia are neglected. Irie et al. [21] investigated the steady-
state out-of-plane response of a Timoshenko arch with internal damping in response to a sinusoidal point
force or moment by using the transfer matrix method. In another work by Irie et al. [22], the transfer matrix
method was adopted to study the out-of-plane free vibration of Timoshenko arches of constant radius. Hence,
the transfer matrix method has been widely used for the one-dimensional acoustic analysis of engine exhaust
muffler. In the present research, the transfer matrix method is employed to investigate the internal
characteristics of the cable–arch and the influence of cable on the behavior of cable–arch structure. The
equations, governing vibrations of the cable–arch, are derived according to Hamilton’s principle for dynamic
problems concerning elastic body under equilibrium state. As an approximation, cables are regarded as
springs with the same stiffness and the mass is neglected. And the arch with discontinuously varying cross-
sections is divided into a number of arches with constant cross-sections. For each arch element, the governing
equations given in Ref. [23] are employed and the exact solution can be obtained by using the transfer matrix
method. In the following, a program by using MATLAB software is presented for investigating the free
vibrations of cable-stayed circular arches. The effects of numbers, stiffness, angle and position of cables and
length and cross-section of arches are investigated. The investigation in this study can provide the basic
guidelines to design the cable–arch structures to achieve the desired mechanical characteristics.

2. System and governing equations

The cable–arch structures are widely used in civil engineering. Fig. 1 shows the three kinds of cable–arch
structures researched in papers [14–17]. The cable–arch (Fig. 2) is the supporting member of the cable-stayed
arch bridge and of erection of arch bridge using the cantilever construction method with tiebacks. The
kinematics of the cable–arch is thoroughly defined by assigning the normal displacement v, the tangential
displacement w, the radius of curvature R, the curvilinear coordinate s, the angular coordinate j, the position
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Fig. 1. Three kinds of configurations of cable–arch: (a) prestress cable–arch, (b) suspended arch and (c) cable–arch roof.

Fig. 2. Geometry and the coordinate system of cable–arch: (a) configuration of cable–arch and (b) situation of cable.
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of the cables fiði ¼ 1; 2; . . . ; nÞ or Siði ¼ 1; 2; . . . ; nÞ, and the initial tensile force of the cables
Piði ¼ 1; 2; . . . ; nÞ. Moreover, aiði ¼ 1; 2; . . . ; nÞ denotes the angle between the cable and the tangential
direction of the point Si, kiði ¼ 1; 2; . . . ; nÞ denotes the axial stiffness of the cable.

The internal forces of a circular arch with uniform cross-section can be expressed by the constitutive
relations [24]:

M ¼ � EJX KX ¼ �EJX

d2v

ds2
þ

dw

Rds

� �
,

N ¼ � EA� ¼ �EA
dw

ds
�

v

R

� �
, (1)

where M and N denote the bending moment and the axial force, respectively. Moreover, e is the axial strain,
A and JX are the area and the moment of inertia of the transversal section, E the Young’s module and KX the
curvature deflection.

The equations of motion of the cable–arch may be derived by using the Hamilton’s principle. According to
Hamilton’s principle, the basic energy variables for the present problems required to describe the vibration
behaviors of cable–arch are the strain energy V ðs; tÞ, the kinetic energy Tðs; tÞ and the active energy W ðs; tÞ.
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The general expressions of these variables are:

for the arch

V ðs; tÞ ¼
EA

2

R S

0

qwðs; tÞ

qs
�

vðs; tÞ

R

� �2
dsþ

EJX

2

R S

0

q2vðs; tÞ
qs2

þ
qwðs; tÞ

R qs

� �2
ds;

Tðs; tÞ ¼
mðsÞ
2

R S

0

qwðs; tÞ

qt

� �2
þ

qvðs; tÞ

qt

� �2( )
ds;

8>>>>><
>>>>>:

(2)

for the cable

W ðs; tÞ ¼
Pn
i¼1

dðs� SiÞ Piwðs; tÞ cos ai þ Pivðs; tÞ sin ai½ �;

V ðs; tÞ ¼
Pn
i¼1

dðs� SiÞ
1
2

kwi wðs; tÞ½ �
2
þ 1

2
kvi vðs; tÞ½ �

2
� �

;

8>>><
>>>:

(3)

in which

kwi ¼
EiAi

Li

cos ai; kvi ¼
EiAi

Li

sin ai,

where Eiði ¼ 1; 2; . . . ; nÞ denotes the Young’s modulus of the cables, m(s) the mass per unit length of the arch,
Aiði ¼ 1; 2; . . . ; nÞ and Liði ¼ 1; 2; . . . ; nÞ denote the area and the length of the cable, respectively.

In general, the Hamilton’s principle is expressed by the equation:

d
Z t2

t1

Tðs; tÞ þW ðs; tÞ � V ðs; tÞ½ �dt ¼ 0. (4)

Replacing Eqs. (2) and (3) into Eq. (4), the principle for the present problems may be expressed for an
arbitrary time interval t1 to t2 as follows:

mðsÞ
2

d
Z t2

t1

Z S

0

qwðs; tÞ

qt

� �2
þ

qvðs; tÞ

qt

� �2( )
dsdt

þ d
Z t2

t1

Xn

i¼1

dðs� SiÞ Piwðs; tÞ cos ai þ Pivðs; tÞ sin ai½ �dt

�
EA

2
d
Z t2

t1

Z S

0

qwðs; tÞ

qs
�

vðs; tÞ

R

� �2
dsdt�

EJX

2
d
Z t2

t1

Z S

0

q2vðs; tÞ
qs2

þ
qwðs; tÞ

Rqs

� �2
dsdt

�
1

2
d
Z t2

t1

Xn

i¼1

dðs� SiÞkwi wðs; tÞ½ �
2 dt�

1

2
d
Z t2

t1

Xn

i¼1

dðs� SiÞkvi vðs; tÞ½ �
2 dt ¼ 0. (5)

The integrals of the variations of the individual terms of Eq. (5) have the values, on integrating by parts:

mðsÞ
2

d
Z t2

t1

Z S

0

qwðs; tÞ

qt

� �2
þ

qvðs; tÞ

qt

� �2( )
dsdt

¼ mðsÞ
Z S

0

qwðs; tÞ

qt
dwðs; tÞ

����
t2

t1

þ
qvðs; tÞ

qt
dvðs; tÞ

����
t2

t1

(

�

Z t2

t1

q2wðs; tÞ
qt2

dwðs; tÞ þ
q2vðs; tÞ

qt2
dvðs; tÞ

� �
dt

)
ds, (6)

d
Z t2

t1

Xn

i¼1

dðs� SiÞ Piwðs; tÞ cos ai þ Pivðs; tÞ sin ai½ �dt

¼

Z t2

t1

Xn

i¼1

dðs� SiÞ Pidwðs; tÞ cos ai þ Pidvðs; tÞ sin ai½ �dt, (7)
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EA

2
d
Z t2

t1

Z S

0

qwðs; tÞ

qs
�

vðs; tÞ

R

� �2
dsdt ¼

Z t2

t1

EA
qwðs; tÞ

qs
�

vðs; tÞ

R

� �
dwðs; tÞ

� �	 ����
L

0

�EA

Z S

0

q
qs

qwðs; tÞ

qs
�

vðs; tÞ

R

� �
dwðs; tÞds�

EA

R

Z S

0

qwðs; tÞ

qs
�

vðs; tÞ

R

� �
dvðs; tÞds



dt, (8)

EJX

2
d
Z t2

t1

Z S

0

q2vðs; tÞ
qs2

þ
qwðs; tÞ

Rqs

� �2
dsdt ¼

Z t2

t1

EJX

q2vðs; tÞ
qs2

þ
1

R

qwðs; tÞ

qs

� �
d

qvðs; tÞ

qs

� �� �����
L

0

(

� EJX

q
qs

q2vðs; tÞ
qs2

þ
1

R

qwðs; tÞ

qs

� �
dvðs; tÞ

� �����
L

0

þ
EJX

R

q2vðs; tÞ

qs2
þ

1

R

qwðs; tÞ

qs

� �
dwðs; tÞ

����
L

0

þEJX

Z S

0

q2

qs2
q2vðs; tÞ
qs2

þ
1

R

qwðs; tÞ

qs

� �
dvðs; tÞds�

EJX

R

Z S

0

q
qs

q2vðs; tÞ
qs2

þ
1

R

qwðs; tÞ

qs

� �
dwðs; tÞds

)
dt, (9)

�
1

2
d
Z t2

t1

Xn

i¼1

dðs� SiÞkwi wðs; tÞ½ �
2 dt�

1

2
d
Z t2

t1

Xn

i¼1

dðs� SiÞkvi vðs; tÞ½ �
2 dt

¼ �

Z t2

t1

Xn

i¼1

dðs� SiÞkwiwðs; tÞdwðs; tÞdt�

Z t2

t1

Xn

i¼1

dðs� SiÞkvivðs; tÞdvðs; tÞdt, (10)

where

dðs� SiÞ ¼
1 s ¼ Si;

0 saSi:

(

In Eq. (6), the variations dwðs; tÞ and dvðs; tÞ at the instants t1, t2 are assumed to be zero. In Eqs. (7), (8), (9) and
(10), considering the boundary conditions, one obtains:

For a hinge:

EJX

q2vðs; tÞ
qs2

þ
1

R

qwðs; tÞ

qs

� �����
s¼0;L

¼ 0; dvðs; tÞ
��
s¼0;L
¼ 0; dwðs; tÞ

��
s¼0;L
¼ 0. (11)

For a clamp:

d
qwðs; tÞ

qs

� �����
s¼0;L

¼ 0; d
qvðs; tÞ

qs

� �����
s¼0;L

¼ 0; dvðs; tÞ
��
s¼0;L
¼ 0; dwðs; tÞ

��
s¼0;L
¼ 0. (12)

Replacing Eqs. (6)–(10), and the boundary conditions specified in Eqs. (11) and (12), the following equations
governing vibrations of the cable–arch have been derived:

EA
q
qs

qwðs; tÞ

qs
�

vðs; tÞ

R

� �
þ

EJX

R

q
qs

q2vðs; tÞ
qs2

þ
1

R

qwðs; tÞ

qs

� �
� mðsÞ

q2wðs; tÞ
qt2

þ
Xn

i¼1

dðs� SiÞðPi cos ai � kwiwðs; tÞÞ ¼ 0, (13)

EJX

q2

qs2
q2vðs; tÞ
qs2

þ
1

R

qwðs; tÞ

qs

� �
�

EA

R

qwðs; tÞ

qs
�

vðs; tÞ

R

� �
þ mðsÞ

q2vðs; tÞ
qt2

þ
Xn

i¼1

dðs� SiÞðPi sin ai � kvivðs; tÞÞ ¼ 0. (14)

Eqs. (13) and (14) derived above express a quite general vibration of cable–arch, undertaking an account of
the effects of extensional axis. In practice, circular arch mostly exhibits a bending deformation, the effect of
centerline compression on the deformation being negligible.
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By differentiating Eq. (13) and dividing out R to Eq. (14), and after appropriate manipulations, one
considers the axial inextensible assumption of the circular arch

� ¼
qwðs; tÞ

qs
�

vðs; tÞ

R
¼ 0

and

ds ¼ Rdj.

The following sixth-order differential equation for the normal displacement in terms of the Hamilton’s
principle can be written as

q5vðj; tÞ
qj5

þ 2
q3vðj; tÞ
qj3

þ
qvðj; tÞ
qj

þ
mR4

EJX

q3vðj; tÞ
qt2qj

þ
R4

EJX

Xn

i¼1

d j� fi

� �
kiwðj; tÞ þ Pið Þcos ai þ ki

qvðj; tÞ
qj

sin ai

� �
¼ 0; (15)

where j denotes the open-angle of arch.
As is evident in the equation of motion, the effects of damping, axial extension, transverse shear

deformation and rotatory inertia are neglected. Although, it is assumed that the cable–arch is simply
supported or clamped, Eq. (15) may be used to solve the free in-plane vibration of cable–arch whose end
is free.
3. Free in-plane vibrations

If the kinetic energy transfer into heat is slow, disturbances may persist for some time after any forcing
function is removed. There can be an important synergy between a forcing function and free vibrations of the
system; such response of the system to particular forcing frequencies is most pronounced. And this
phenomenon is often explored in practice by resonance testing, where the response of a structure to a localized
stationary vibrating load is an important test for its safety. Thus, free vibrations of the system may have
interest not only mathematically but also physically, and these occur probably in the vicinity of their original
source or at significant distances away.

When ki ¼ 0 and Pi ¼ 0, Eq. (15) can be expressed as linear homogeneous equation [23]:

q5vðj; tÞ
qj5

þ 2
q3vðj; tÞ
qj3

þ
qvðj; tÞ
qj

þ
mR4

EJX

q3vðj; tÞ
qt2qj

¼ 0 (16)

and has the well-known solution

v j; tð Þ ¼ V jð Þ sin otþ cð Þ (17)

in any span fiojofiþ1ði ¼ 1; 2; � � � ; nÞ, where V(j) is the displacement function of the system, o the circular
frequency of vibration of the system and c the initial phase of the vibration.

Substituting Eq. (17) into Eq. (16) may yield

d5V ðjÞ
dj5

þ 2
d3V ðjÞ
dj3

þ 1� x2
� � dV ðjÞ

dj
¼ 0, (18)

where x is the circular frequency factor of the system defined by

x2 ¼
mo2R4

EJX

.

The solution can be expressed as [23]

V ðjÞ ¼ C1 þ C2 cos ajþ C3 sin ajþ C4 cosbjþ C5 sinbj, (19)
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where a ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� x
p

ð0oxo1Þ and b ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ x
p

ð0oxo1Þ, and

V ðjÞ ¼ C1 þ C2 chbjþ C3 shbjþ C4 cos ajþ C5 sin aj, (20)

where a ¼
ffiffiffiffiffiffiffiffiffiffiffi
xþ 1
p

ðx41Þ and b ¼
ffiffiffiffiffiffiffiffiffiffiffi
x� 1
p

ðx41Þ.
By using the force–displacement relations and the equilibrium conditions, the following equations has been

derived:

wðjÞ ¼ C1jþ
C2

b
shbjþ

C3

b
ch bjþ

C4

a
sin aj�

C5

a
cos ajþ C6, (21)

yðjÞ ¼
1

R
C1jþ C2

1

b
þ b

� �
shbjþ C3 bþ

1

b

� �
chbjþ C4

1

a
� a

� �
sin aj

�

þC5 a�
1

a

� �
cos ajþ C6

�
, (22)

MðjÞ ¼ �
EJX

R2
C1 þ C2 1þ b2

� �
chbjþ C3 1þ b2

� �
shbjþ C4 1� a2

� �
cos ajþ C5 1� a2

� �
sin aj

� �
, (23)

QðjÞ ¼ �
EJX

R3
C2 b3 þ b
� �

sh bjþ C3 bþ b3
� �

chbjþ C4 a3 � a
� �

sin ajþ C5 a� a3
� �

cos aj
� �

, (24)

NðjÞ ¼
EJX

R3
�C1x

2 þ C2 b4 þ b2 � x2
� �

chbjþ C3 b4 þ b2 � x2
� �

sh bj
�

þC4 a4 � a2 � x2
� �

cos ajþ C5 a4 � a2 � x2
� �

sin aj
�
, (25)

where x41, Ciði ¼ 1; 2; . . . ; 6Þ are the coefficients that can be represented in terms of the nodal displacements
at two end nodes. Moreover, w(j) is the tangential displacement, y(j) the angle of rotation of the cross-
section, M(j) the internal moment about the binormal axis, Q(j) the shear force of the cross-section and N(j)
the axial force of the cross-section.

Subrahmanyam and Garg [25] developed a computer code by using a transfer matrix procedure for the
solution of the beam flexure problem. Although the transfer matrix method is a traditional technique with
some shortcomings, it is sometimes very convenient to use, particularly for line-like structures. The following
addresses use of the transfer matrix method to study the in-plane vibration of cable–arch.

Eqs. (20)–(25) can be written in matrix form as

t ¼ Tc, (26)

in which

t ¼ w v y M Q N 1
� �T

; c ¼ C1 C2 C3 C4 C5 C6 1
� �T

,

T ¼

T11 T12 T13 T14 T15 T16 0

T21 T22 T23 T24 T25 T26 0

T31 T32 T33 T34 T35 T36 0

T41 T42 T43 T44 T45 T46 0

T51 T52 T53 T54 T55 T56 0

T61 T62 T63 T64 T65 T66 0

0 0 0 0 0 0 1

2
666666666666664

3
777777777777775

, (27)

where t, c and T is the state vector of the system, the coefficient vector and the unit transfer matrix,
respectively. Tijði; j ¼ 1; 2; . . . ; 7Þ is written in Appendix A.

Let us consider the point Siði ¼ 1; 2; . . . ; nÞ that the cable is anchored on (Fig. 3), the equilibrium
conditions between right cross-section and left cross-section of the point Si can be expressed by the



ARTICLE IN PRESS

Fig. 3. Equilibrium conditions between right cross-section and left cross-section of the point Si.
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following formulae:

NR
i ¼ NL

i � Pi cos ai þ kiw cos aið Þ; QR
i ¼ QL

i þ Pi sin ai þ kiv sin aið Þ,

MR
i ¼ML

i ; yR
i ¼ yL

i ; wR
i ¼ wL

i ; vR
i ¼ vL

i , (28)

where the superscript R and L denote the right and left cross-section of the node Siði ¼ 1; 2; . . . ; nÞ,
respectively. Eq. (28) can be written also in matrix form as

tRi ¼ TN
i t

L
i , (29)

in which

tRi ¼ wR
i vR

i yR
i MR

i QR
i NR

i 1
h iT

; tLi ¼ wL
i vL

i yL
i ML

i QL
i NL

i 1
h iT

,

TN
i ¼

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 ki sin ai 0 0 1 0 Pi sin ai

�ki cos ai 0 0 0 0 1 �Pi cos ai

0 0 0 0 0 0 1

2
666666666666664

3
777777777777775

,

where tRi and tLi are the right and left state variables of the node Si, and TN
i is the transfer matrix of node.

One defines the initial state vector

t0 ¼ w0 v0 y0 M0 Q0 N0 1
h iT

,

then the coefficient vector c in Eq. (26) can be expressed by substituting t0 and j ¼ 0 into Eq. (26) as

c ¼ T�10 t0, (30)

where the superscript �1 denotes the inverse matrix of T when j ¼ 0, and the elements of T�10 are written in
Appendix B.

Thus, the left state vector tL1 of the first point S1 that the cable is anchored on is taken to be

tL1 ¼ T1T
�1
0 t0, (31)
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where j ¼ j1 in the matrix T1. Considering Eq. (29) gives

tR1 ¼ TR
1 t0, (32)

where TR
1 ¼ TN

1 T1T
�1
0 .

Similarly, tR2 can be written as

tR2 ¼ TR
2 t

R
1 , (33)

where TR
2 ¼ TN

2 T2T
�1
0 . Applying the transfer matrix principle, tRn can be derived

tRn ¼ TR
n t

R
n�1 ¼ TR

n T
R
n�1t

R
n�2 ¼ � � � ¼ TR

n T
R
n�1T

R
n�2 � � �T

R
1 t0 ¼ TRt0 (34)

in which TR is the global transfer matrix of the system and can also be written as

TR ¼ TN
n TnT

�1
0 TN

n�1Tn�1T
�1
0 TN

n�2Tn�2T
�1
0 � � �T

N
2 T2T

�1
0 TN

1 T1T
�1
0 . (35)

Deriving the global transfer matrix TRðxo1Þ is analogous and the process of it is neglected. In Eq. (34), TR

is a 7� 7 matrix, t0 and tRn denote the state vector at the end points A and B. Since the effect of the
concentrated force Pi on the natural frequencies is negligible, the system can be reduced to a homogeneous
system by making Pi ¼ 0ði ¼ 1; 2; . . . ; nÞ.

The boundary conditions for end point A as shown in Fig. 2 can be given:

Hinged end : wðjAÞ ¼ 0; vðjAÞ ¼ 0; MðjAÞ ¼ 0.

Clamped end : wðjAÞ ¼ 0; vðjAÞ ¼ 0; yðjAÞ ¼ 0.

Free end : MðjAÞ ¼ 0; QðjAÞ ¼ 0; NðjAÞ ¼ 0.

Similar boundary conditions are specified for the end B in Fig. 2. For a nontrivial solution, the determinant of
the homogeneous system must be equal to zero and this requirement will give the natural frequencies of the
system (cable–arch structure) in accordance with the boundary conditions. Mode shapes are specified by
substituting the factor x of the circular frequency into Eq. (34). This solution procedure can also be applied to
the case in which the cross-section is stepped by making the matrix TN

i to be a unit matrix.

4. Numerical evaluations and comparisons

The dimensionless circular frequency factors xi ¼ oiR
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=EJx

p
are calculated for four different cases:

Case 1: The program of solving circular frequency factors xi is verified by finite element method.
Case 2: Effects of the character of cable on the circular frequency factors are considered.
α 1 
= 

57
° α

n  =
 57°

Φ 1 =
 30° Φ

n  = 30°

ϕ = 100˚

Fig. 4. Elevation of cable–arch.
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Case 3: Effects of the parameter of the arch on the circular frequency factors are investigated.
Case 4: Effects of the construction process of the arch on the circular frequency factors are investigated.
The examples (Fig. 4) are solved for clamped–clamped, hinged–hinged, clamped–hinged and clamped-free

end conditions. The frequency factors are calculated for the lowest five modes of vibration of the system with
the following properties: the material of arch is steel with an opening angle j ¼ 1001, Young’s modulus
Eg ¼ 2:06� 1011 Pa, the area of cross-section b� h ¼ 0:3� 0:8m2, the mass of unit length m ¼ 1872 kg/m,
R ¼ 60m, the material of cable is a high-strength steel wire with As ¼ 0:00255m2, Es ¼ 2:1� 1011 Pa and
P ¼ 656.25 kN; the other properties of the cable and arch are shown in Fig. 4.

The developed analysis was numerically implemented through a MATLAB program, which was tested for
efficiency and reliability. The lowest five frequencies and periods of pure arch and cable–arch with
hinged–hinged conditions are showed in Table 1 when R ¼ 60m and j ¼ 1001. The results of this study for
frequency differ mostly by only 8% from the finite elemental solution. This comparatively favorable
comparison paved the way to an analysis of the dynamic characters of cable–arch. Furthermore, it is worth
noting that the frequencies of cable–arch are bigger than that of pure arch in Table 1. In other words, the cable
makes the stiffness of the cable–arch bigger than pure arch in a plane. In Fig. 5, the lowest five mode shapes
are given for hinged–hinged pure arch and cable–arch. There are nearly no differences between pure arch and
cable–arch on the lowest five mode shapes, because the stiffness of cable is not enough to change the mode
shape of pure arch.

In Fig. 6, the lowest five frequency factors are given for hinged–hinged, clamped–clamped and
clamped–hinged cable–arch. The differences among the results of the various positions fi are considerably
large, and it is obvious that the frequencies increases further with an increase in the angle f1 when a1 ¼ 531.
However, the dissimilarity between the different boundary conditions: hinged–hinged, clamped–clamped and
clamped–hinged is significantly small.

In Fig. 7, effects of stiffness of cable on the lowest five frequency factors are given for hinged–hinged,
clamped–clamped and clamped–hinged cable–arch. Effects of numbers of cable on the lowest five frequency
factors for hinged–hinged, clamped–clamped and clamped–hinged cable–arch are shown in Fig. 8. A sharp
increase in the lowest five frequency factors, which is due to the increase in the stiffness and the number of
cables, can be seen in Figs. 7 and 8. It shows that the in-plane stiffness of cable–arch increases while the
stiffness and numbers of the cable increase. However, the effects of the boundary conditions on the frequency
factors are comparatively lesser.

In Fig. 9, effects of the angle a1 of cable on the lowest five frequencies are given for hinged–hinged,
clamped–clamped and clamped–hinged cable–arch with the situation angle f1 ¼ 101. It can be seen easily in
the figure that the angle a1, due to the in-plane vibration of cable–arch, has a negligible effect.

Effects of the radius R of the arch on the lowest five frequencies are shown for hinged–hinged,
clamped–clamped and clamped–hinged cable–arch with the opening angle j ¼ 1001 in Fig. 10. It is concluded
from Fig. 10 that the influence of the radius R on the frequency factors is important and the sharp decrease of
the frequency factors is due to the increase of the radius R.
Table 1

Frequency and period of pure arch and cable–arch

Mode no. Frequency (Hz) Period (s)

Arch Cable-stayed arch Arch Cable-stayed arch

ROFEM ROTS ROFEM ROTS ROFEM ROTS ROFEM ROTS

1st 0.5654 0.6275 1.4310 1.3328 1.7687 1.5936 0.6988 0.7503

2nd 1.3590 1.4017 2.6260 2.8438 0.7358 0.7134 0.3808 0.3516

3rd 2.5980 2.6675 4.6740 4.6751 0.3849 0.3749 0.2139 0.2139

4th 4.0710 4.1245 5.5510 5.5732 0.2456 0.2425 0.1801 0.1794

5th 5.9920 5.9920 7.2120 7.2704 0.1669 0.1669 0.1387 0.1375

Note: ROFEM ¼ results of finite element method, ROTS ¼ results of this study.
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Fig. 5. The lowest five mode shapes of pure arch and cable–arch: (a) first mode, (b) second mode, (c) third mode, (d) fourth mode and

(e) fifth mode. —, configuration of arch; - - - - -, mode shape of pure arch; —, mode shape of cable–arch.
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Fig. 6. Effects of situation of cable on the lowest five frequencies: (a) hinged–hinged. (b) clamped–clamped and(c) clamped–hinged.

–’–, 101; –&–, 131; –K–, 161; –J–, 191; –m–, 221.
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In Table 2, the frequencies of cable–arch of uniform and variable cross-section are given for
clamped–clamped arch and cable–arch. There are two kinds of step arches. The calculations of the ‘active’
dimensions of the nine-step arch in this example are h1 ¼ 1.1m, h2 ¼ 1.0m, h3 ¼ 0.8m, h4 ¼ 0.6m, h5 ¼ 0.5m,
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Fig. 7. Effects of stiffness of cable on the lowest five frequencies: (a) hinged–hinged, (b) clamped–clamped and (c) clamped–hinged.

–’–, 0.1A; –&–, 0.5A; –K–, A; –J–, 1.5A; –m–, 10A; A ¼ area of cross-section of cable.
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Fig. 8. Effects of numbers of cable on the lowest five frequencies: (a) hinged–hinged. (b) clamped–clamped and (c) clamped–hinged.

–’–, two cables; –&–, four cables; –K–, six cables; –J–, eight cables; –m–, ten cables.
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h6 ¼ 0.6m, h7 ¼ 0.8m, h8 ¼ 1.0m and h9 ¼ 1.1m. It is shown that the area of cross-section of the
foot is bigger than that of crown (VCS1). On the contrary, the other kind step arch is VCS2, and
the ‘active’ dimensions of the nine-step arch are h1 ¼ 0.5m, h2 ¼ 0.6m, h3 ¼ 0.8m, h4 ¼ 1m,
h5 ¼ 1.1m, h6 ¼ 1m, h7 ¼ 0.8m, h8 ¼ 0.6m, h9 ¼ 0.5m. The height of the uniform cross-section is
h ¼ 0.8m. In Table 2, the lowest five natural frequencies of cable–arch with three kinds of cross-sections
are compared: it is shown that the difference between the frequencies is considerably big and the
frequencies of the cable–arch with VCS2 are the biggest. Similarly, it is also concluded from the frequencies of
the pure arch.
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Fig. 9. Effects of the angle of cable on the lowest five frequencies: (a) hinged–hinged, (b) clamped–clamped and (c) clamped–hinged.

–’–, 81.6351; –&–, 68.7561; –K–, 57.7691; –J–, 48.9051.
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Fig. 10. Effects of the radius of arch on the lowest five frequencies: (a) hinged–hinged, (b) clamped–clamped and (c) clamped–hinged.

–’–, 50m; –&–, 55m; –K–, 60m; –J–, 65m; –m–, 70m.

Table 2

The frequencies of cable–arch of uniform and variable cross-section (Hz)

Mode no. Uniform cross-section Variable cross-section (1) Variable cross-section (2)

Pure arch Cable–arch Pure arch Cable–arch Pure arch Cable–arch

1 0.7392 2.2369 0.6394 1.9887 0.7592 2.6133

2 1.5826 3.8922 1.5719 3.4258 1.6665 5.0190

3 2.9345 6.9100 2.8703 5.7491 2.9256 7.4100

4 4.4586 7.6767 4.2987 7.4772 4.4037 8.3904

5 6.4928 10.168 6.3738 9.8268 6.3406 10.393

Note: Variable cross-section (1) ¼ the area of cross-section of the foot is bigger than that of crown; variable cross-section (2) ¼ the area of

cross-section of the foot is smaller than that of crown.

Y. Zhao, H. Kang / Journal of Sound and Vibration 312 (2008) 363–379 375



ARTICLE IN PRESS

C
a
b
le

1# 1#
2#

1#

2#
3#

4#
5#

6#
7#

Cable

Fig. 11. Erection of arch of the (a) first segment, (b) second segment and (c) seventh segment.

Table 3

The lowest five frequencies of the erection of the arch (Hz)

Mode no. 1st 2nd 3rd 4th 5th 6th 7th 8th

1 11.199 11.491 9.9771 5.270 6.7765 4.9773 4.2273 5.2699

2 24.270 13.254 11.624 5.691 10.196 8.683 7.9531 5.691

3 70.217 31.132 18.141 8.535 13.592 12.101 11.284 8.535

4 112.40 61.748 35.034 9.048 18.567 14.949 13.987 9.0483

5 144.53 73.722 54.936 10.85 28.801 21.485 18.982 10.851
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In the following section, a research on the frequencies of erection process of the arch bridge built using the
cantilever construction method with tiebacks (Fig. 11) is investigated. The arch is divided to 15 segments, 1# to
7# belonging to the west main arch, and 9# to 15# belonging to the east and 8# connects both sides. The
lowest five frequencies of the erection process of the arch are given in Table 3. While the segments increase, the
frequencies of the arch decrease contrarily. In other words, the stiffness is reduced by an increase in the length
of the arch with uniform cross-section

5. Conclusions

The term ‘cable–arch structures’ is commonly used in cable roofs and cable bridges; however, the dynamic
model of cable–arch is proposed for the first time in this paper, and the governing equations of the cable–arch,
considering the effects of axial extension and neglecting the effects of shear deformation and rotatory inertia,
are derived according to Hamilton’s principle for dynamic problems in elastic body under equilibrium state, in
this paper. Then, by using the transfer matrix method and by neglecting the effects of axial extension, the exact
solutions are obtained in terms of the boundary conditions (hinged–hinged, clamped–clamped and
clamped–hinged, hinged-free). The same solution is employed for the cases in which the variable cross-
sections of arch as well as the effects of parameters of cable and arch are considered. Compared to pure arch,
obviously the cable–arch structure is more superior.

For all modes, the natural frequencies exhibit sharp increases for cable–arch with an increase in the stiffness,
number and situation angle f1 of the cable. On the contrary, the natural frequencies show clearly decreases in
cable–arch with an increase in the opening angle j and the length of arch. However, the frequencies of
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cable–arch are not sensitive to the boundary conditions: hinged–hinged, clamped–clamped and clamped–
hinged. In other words, the cable can make a pure arch insensitive to boundary conditions. An important
conclusion expounds that the natural frequencies of cable–arch are bigger than the pure arch but there is no
significant change in the mode shapes.

In the literature, the discontinuity of arch has been considered for the pure arch and the cable–arch, and two
kinds of step arches are investigated. The height and position of the cross-section of the arch affect the
frequency.

The frequencies of erection process of the arch bridge are investigated. The frequencies of the arch decreases
while the segments of the arch go on increasing.

The cases given in this paper are ultimately solved and the results are compared by finite element method.
Between these results, absolute agreement can also be easily found. And all the cases show that cables improve
the in-plane stiffness of the arch. The analysis results indicate that the program is accurate; meanwhile, the
mechanical model and method are both valuable and significant not only in theoretical research and
calculation but also in the design of engineering.
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Appendix A

The elements of the matrix T in Eq. (27) are given as follows:

T11 ¼ j; T12 ¼
1

b
shbj; T13 ¼

1

b
chbj;

T14 ¼
1

a
sin aj; T15 ¼ �

1

a
cos aj; T16 ¼ 1;

T21 ¼ 1; T22 ¼ chbj; T23 ¼ shbj;

T24 ¼ cos aj; T25 ¼ sin aj; T31 ¼
j
R
;

T32 ¼
1

R

1

b
þ b

� �
shbj; T33 ¼

1

R
bþ

1

b

� �
ch bj; T34 ¼

1

R

1

a
� a

� �
sin aj;

T35 ¼
1

R
a�

1

a

� �
cos aj; T36 ¼

1

R
; T41 ¼ �

EJX

R2
;

T42 ¼ �
EJX

R2
1þ b2
� �

chbj; T43 ¼ �
EJX

R2
1þ b2
� �

shbj; T44 ¼ �
EJX

R2
1� a2
� �

cos aj;

T45 ¼ �
EJX

R2
1� a2
� �

sin aj; T52 ¼ �
EJX

R3
b3 þ b
� �

shbj; T53 ¼ �
EJX

R3
bþ b3
� �

chbj;

T54 ¼ �
EJX

R3
a3 � a
� �

sin aj; T55 ¼ �
EJX

R3
a� a3
� �

cos aj; T61 ¼ �
EJX

R3
x2;

T62 ¼
EJX

R3
b4 þ b2 � x2
� �

chbj; T63 ¼
EJX

R3
b4 þ b2 � x2
� �

shbj;

T64 ¼
EJX

R3
a4 � a2 � x2
� �

cos aj; T65 ¼
EJX

R3
a4 � a2 � x2
� �

sin aj; T77 ¼ 1;

the rest elements of T are zero.
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Appendix B

The elements of matrix T�10 Eq. (30) are given as follows:

T12 ¼
�x2 þ ða2 � 1Þð1þ b2Þ

a2b2
; T14 ¼

R2ða2 � b2 � 1Þ

EJXa2b
2

; T16 ¼ �
R3

EJXa2b
2
;

T22 ¼ �
1þ x2 � a2

a2b2 þ b4
; T24 ¼

R2ð1� a2Þ

EJX ða2b
2
þ b4Þ

; T26 ¼
R3

EJX ða2b
2
þ b4Þ

;

T31 ¼
1� a2

a2bþ b3
; T33 ¼

Rða2 � 1Þ

bða2 þ b2Þ
; T35 ¼ �

R3

EJXbða2 þ b2Þ
;

T42 ¼
1þ x2 þ b2

a2ða2 þ b2Þ
; T44 ¼

R2ð1� a2Þ

EJXb
2
ða2 þ b2Þ

; T46 ¼
R3

EJXb
2
ða2 þ b2Þ

;

T51 ¼ �
1þ b2

aða2 þ b2Þ
; T53 ¼

Rð1þ b2Þ

aða2 þ b2Þ
; T55 ¼

R3

EJXaða2 þ b2Þ
;

T61 ¼
ð1þ b2Þða2 � 1Þ

a2b2
; T63 ¼

Rð1þ b2 � a2Þ

a2b2
; T65 ¼

R3

EJXa2b
2
;

T77 ¼ 1, the rest elements of T�10 are zero.
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